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Abstract: Structure from Motion (SfM) has been proved an efficient algorithm of 3-D point cloud 
reconstruction derived from optical images. This paper extends it to infrared images taken by thermal cameras. 
To solve the absence of distinctive features and presence of thermal reflections with low contrast, this paper 
proposed a new TAC-RANSAC model to eliminate the mismatches using a feature detection algorithm suitable 
for infrared images. The experiment shows that the proposed method reduced the number of mismatches and 
obtain an ideal result of reconstruction. 
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1 Introduction 
3-D reconstruction has always been an active 

topic in the field of computer vision. We human 
understand the real world through our eyes and form 
a 3-D model in our brain. Computers are expected to 
do the same thing to make the real world 
comprehensive to themselves. Some efforts have 
been done in the field of 3-D reconstruction with 
optical images, such like Shape from Shading [1], 
Structure from Motion (SfM) [2], Multi-view Stereo 
[3] and some deep learning methods [4, 5] in recent 
years. Compared to other methods, SfM is fast, 
little-memory needed, resulted relatively well, thus 
cost-effective. 

Unlike optical light, infrared light is invisible to 
the human eye and requires a thermal camera to 
generate images. Infrared images show the 
temperature distribution the object. As a result, they 
have low resolution, poor contrast, blurred visual 
effect and various forms of noise compared to 
optical images. However, thermal imaging is not 
affected by environmental factors such as weather, 
light, and smoke, as optical imaging always be.  

Therefore, infrared images are often used for the 
detection and maintenance of power system. 
However, infrared images can only provide 2-D 
information. Due to the lack of depth information in 
2-D images, it is meaningful to reconstruct 3-D 
models with rich temperature information as well as 
stereo information, which can show both the surface 

information and 3-D structure of the monitoring 
target more realistically. Besides, 3-D thermal 
models are also contributory to some medical 
applications [6] and human face recognition [7] due 
to these desirable properties.   

Some efforts have been done in the field of 3-D 
infrared reconstruction. Zeng et al. [8] proposed an 
IR-SFS algorithm, which improved the traditional 
SFS algorithm by both considering external light 
source and self-radiation of infrared objects. Jia et 
al. [9] proposed an improved belief propagation 
algorithm to enhance the stereo match of thermal 
images. A convolutional auto-encoder based method 
is applied to image matching and 3-D thermal 
reconstruction [10], which is capable of extracting 
features from low or nontextured objects, and 
perform robust patch matching from multiview 
stereo infrared imagery. Yet, there are still a trade-
off between running speed, needed memory and 
accuracy of the result of reconstruction. 

In the conference version of this paper [17], we 
improve the SfM algorithm so that make it w ork 
with infrared images. To overcome the absence of 
distinctive features and the presence of low contrast, 
we summarize a feature detection algorithms 
suitable for infrared images, and proposed a new 
TAC-RANSAC model to eliminate the mismatches. 
The proposed TAC-RANSAC model utilizes the 
feature of temperature in infrared images.  
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This journal paper extends our earlier work 
through further analysis and more results. 
Alternative environments, conditions and 
implementation details better cover the proposed 
method.  The experiment shows that the proposed 
method reduces mismatches and obtain an ideal 
result of reconstruction from infrared images, seen 
in section 3. 
 
 
2 Improved SfM 

Structure from Motion (SfM) is a wide-used 
algorithm in the field of optical 3-D reconstruction. 
In this chapter, we briefly introduced the typical 
SfM algorithm with its post-processing, and then 
describe our improvement to extend it to the 
application of infrared images. 
 
 
2.1 Structure from Motion 
     SfM is a mature algorithm in the field of 3-D 
reconstruction of images taken by optical sensors 
such like personal digital cameras. The workflow of 
SfM is shown in Fig. 1. 
     The feature detection part extracts key points 
from all images, and describes them mathematically 
by descriptors such as SIFT [14], SURF [15] and 
other algorithms. The matching part matches the 
keypoints in corresponding images with the 
descriptors. The obtained keypoint correspondence 
and RANSAC algorithm are utilized to calculate the 
camera poses. Finally, the epipolar constraint is 
used to verify all correspondences and remove 
mismatches. 
     When correct pairs of matching keypoints are 
obtained, the fundamental matrix F and essential 
matrix E can be estimated through the epipolar 
constraint, which indicates that each pair of 
matching keypoints x  and ′x satisfies 

 ~ 0′Tx x Ε   (1) 

where E is determined only by the rotation matrix R 
and translation matrix T and thus the camera matrix 
P is obtained. 
     Then points in the real world can be generated by 
triangulation. The back-projection radial lines are 
not usually intersected due to the reprojecting errors, 
as shown in Fig. 2. The Golden Rule [16] is usually 
adopted to minimize the error sum of squares of the 
distance between the generated real-world points 
reprojecting to the image û ( ,X)i iP  and the real-
image points ui, which is  

 
Fig.1 The Workflow of SfM. 

 

Fig.2 The generated real-world points reproject to 
the image with error. 

 2ˆarg min || u u ( ,X) ||i i i
X i

X P= −∑   (2) 

which gives the maximum likelihood solution of X . 
     It is obviously that the feature detection part and 
the matching part are the basic parts of SfM, which 
almost determine the quality of the reconstruction 
result. Common methods to eliminate mismatches 
include cross-filtering, KNN (K-Nearest Neighbor), 
RANSAC and AC-RANSAC (A Contrario Random 
Sample Consensus) [11, 12]. 
 
 
2.2 TAC-RANSAC 
     TAC-RANSAC is proposed on the basis of AC-
RANSAC, adding the unique feature of thermal 
images, the temperature. In the following content, 
first we briefly introduce the basic RANSAC and 
AC-RANSAC and then follows the detailed idea of 
the proposed TAC-RANSAC. 
 
 
2.2.1 RANSAC and AC-RANSAC  

RANSAC is the most common-used algorithm to 
eliminate mismatches. Its core idea is quiet simple 
and can be separated to 3 steps: 

1) Randomly sample N pairs of data to estimate 
the model; 

2) Compute matches constrained by the threshold; 
3) End the iteration if the number of iterarion is 

less than n and the number of matches is larger than 
m. Otherwise restart the algorithm from 1). 

The key of RANSAC is the hyperparameters set 
by the users of the algorithm. RACSAC may not 
able to find a reasonable model if the threshold of 
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difference between matches and mismatches, σ, is 
set too low, and the model resulted may be not 
optimized if the number of iterations is set too small. 
Consequently, a problem occurs which the 
hyperparameters depend on specific data and 
models. To solve this problem, AC-RANSAC is 
proposed which does not need a threshold. Instead, 
the algorithm finds a balance between σ and the 
number of matches by controlling NFA (Number of 
False Alarms). The common formula of NFA is 

( )0( ) samplek Nd
out sample k

sample

kn
NFA N n N

Nk
ε α

−  
= −   

  
 

 (3) 

where Nsample denotes the minimum number of 
needed samples to estimate one model. Nout denotes 
the number of models that can be inferred from 
Nsample samples, which equals to 1 in this case. 
Assume the threshold between matches and 
mismatches is εk, which represents the kth residual 
of n samples. α0 denotes the probability of the 
maximum error of randomly selected samples 
equaling one pixel. d refers to the dimension which 
equals 1 for point-to-line distance and 2 for point-to-
point, respectively. The probability of each point 
pair becoming a match is εk 

d α0 since all samples are 
independent in the background model. 
 
 
2.2.2 TAC-RANSAC  
     TAC-RANSAC uses the temperature information 
as another constraint to distinguish matches from 
mismatches. The thermal camera used in experi-
ments, FLIR® Tau 2, can take 9 pictures per second. 
Thus, it can be assumed that the temperature of a 
certain point remains almost the same in the second. 
In view of this, the temperature information is 
introduced into NFA as another error term, which is 
the proposed NFAT (Number of False Alarms with 
Temperature) 

( )1 0 2 0

( , ) ( )

( ) + ( ) sample

out sample
sample

k Nd

kn
NFAT M k N n N

Nk

M M

χ

σ α σ β
−

  
= −   

  

⋅

 

 (4) 

where χ is a normalized value. σ1(M) = ξk represents 
the first minimum distance error in all correspond-
ing relations. σ2(M) = εk denotes the first lowest 
temperature error in all corresponding relations 
under model M. β0 is the probability of a random 
corresponding pair having at most 0.01℃ 
temperature difference, which is 

 0
0.01
T

β =   (5) 

where T is the average of the difference of the 
highest and lowest temperature of two matched 
images, Ii and Ij , which is 

 max min max min( ) ( )
2

i i j jT T T TT − + −
=   (6) 

where T i 
max, T i 

min, T j 
max and T j 

min represent the highest 
and lowest temperature in the image Ii and image Ij , 
respectively. The temperature and the pixel value of 
each point in the infrared image are proportional, 
which is 

   0.04 273.15pT I= × −   (7) 

σ2(M)β0 is the probability of a random 
correspondence pair having at most εk temperature 
error for under the assumed background model 
distribution. Thus the last factor of NFAT denotes 
probability of k −  Nsample pairs of matches having at 
most εk and ξk errors. In other words, this is the 
expectation that model M has a f alse alarm of k 
matches in the hypothetical background model. If M 
is considered reasonable, then 

 
1...

( ) min ( , )
sample nk N

NFAT M NFAT M k ε
+=

= ≤   (8) 

where ε is usually set to be 1 (the lower, the more 
accuracy). The whole algorithm is listed in Table 1. 
     We use TAC-RANSAC to estimate the homogra-
phy matrix to eliminate mismatches. In that case, 
Nsample = 4, Nout = 1, d = 2, α0 = π / (w * h). Then 
NFAT becomes 

 
4

2

( , ) ( 4)
4

0.01+
*

k

k k

n k
NFAT M k n

k

w h T

χ

πξ ε
−

  
= −   

  

 ⋅ 
 

  (9) 

where ξk is the d or max(d, d’) in Fig. 3. 
The experiment results are listed in section 3, 

demonstrating the effectiveness and practicability of 
TAC-RANSAC in 3.1, a nd the resulting improve-
ment of reconstruction in 3.2, respectively. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Yingying Kong, Bowen Zhang, 

Yingying Chen, Henry Leung, Shiyu Xi

E-ISSN: 2224-3488 16 Volume 15, 2019



 
Fig.3 The residual from the homography matrix. 

Table1. The TAC-RANSAC Algorithm. 

Input:  Nsample : the number of samples needed to 
estimate model parameters. 

ε: the NFAT threshold. 
nIter : iterations. 

Process: 
1: Randomly select Nsample samples. 
2: Estimate model parameter Param . 
3: Calculate the residual of n − Nsample and sort in 

ascending order. 
4: Put the remain in matches in order and calculate 

NFAT, save the Param with lowest NFAT. 
5: Decide whether Param is reasonable and discard it 

if not.   
6: Go to step 1 if nIter has not been reached. 

Output: Param: the parameter of the model. 
 
 
3 Experiment 

In this section, we use infrared image pairs with 
different environments and color table to test our 
method. The direct result and the resulting improve-
ment of reconstruction are listed in 3.1 a nd 3.2, 
respectively. 
 
 
3.1 The Direct result from TAC-RANSAC 
     In this paper, cross-filtering, KNN and TAC-
RANSAC algorithms are combined to produce an 
accurate and efficient model to eliminate misma-
tches. Cross-filtering can significantly remove the 
obvious mismatches. Both the time complexity and 
space complexity of the algorithm are low, but so is 
the accuracy. So cross-filtering is utilized as the first 
and a primary step to eliminate mismatches. KNN 
algorithm is better than cross-filtering in terms of 
accuracy, thus can be used as t he consequent step 
(In this paper, k = 2). Running KNN after cross-
filtering is faster and more efficient than running 

KNN directly since cross-filtering filtering out 
obvious mismatches. The searching range of the 
KNN algorithm can be narrowed, thereby shorten-
ing the matching time and improving the efficiency. 
After this two steps of filtering, a quantity of 
mismatches with large error has been removed. The 
influence of large error has been eliminated so that 
the TAC-RANSAC algorithm is able to estimate an 
accurate geometric constraint model. The combina-
tion of cross-filtering, KNN and TAC-RANSAC to 
eliminate mismatches is theoretically reasonable and 
effective. 

  

  
(a) RANSAC 

  

  
(b) AC-RANSAC 

  

  
(c) TAC-RANSAC 

Fig.4 Results of eliminating mismatches with 3 
methods presented above. 

     4 pairs of infrared images are used to estimate 
the result of RANSAC, AC-RANSAC, and pro-
posed TAC-RANSAC. The matching result is 
shown in Fig. 3 a nd the performance is listed in 
Table 2, 4 rows for 4 pairs of images, respectively. 
The result shows that the TAC-RANSAC improves 
the result in terms of the number of matches, error 
sum, and matching speed. 
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3.2 The resulting improvement of reconstru-
ction 

After the matching step, 60 and 72 infrared 
images, respectively, are used to build the 3-D point 
clouds based on SfM using the result of AC-
RANSAC and TAC-RANSAC. Then PMVS 
method [13] is applied to generate the dense point 
clouds. The results of reconstruction are performed 
in Fig. 4, which show that the generated 3-D point 
cloud based on TAC-RANSAC matching model has 
more matching points. The point cloud is also fuller, 
denser and more complete. The result is shown 
quantitatively in Table 3 in terms of the number of  

Table2. Performance of 3 models 

 RANSAC 
AC-

RANSAC 
TAC-

RANSAC 

Error 
sum 

1.772 
2.238 
4.449 
2.901 

1.615 
1.934 
3.903 
1.823 

0.975 
0.985 
1.676 
0.725 

Matching 
time 

0.478s 
0.307s 
0.563s 
0.353s 

0.521s 
0.378s 
0.611s 
0.368s 

0.404s 
0.247s 
0.599s 
0.304s 

The 
number 

of 
matches 

348 
146 
366 
224 

356 
176 
388 
229 

350 
191 
369 
234 

 
Table3. Performance of 3-D point cloud based on 

AC-RANSAC and TAC-RANSAC 

Models AC-RANSAC 
TAC-

RANSAC 
The number of 

points 
23700 
51023 

30067 
60047 

Mean angular 
error 

0.273° 
0.55 

0.097° 
0.12 

Running time 
333s 
603s 

301s 
555s 

Mean position 
error 

8.71cm 
2.56cm 

3.26cm 
1.80cm 

RMSE 
3.98cm 
4.76cm 

3.23cm 
3.59cm 

 

points, mean angular error, running time, mean 
position error and RMSE, 2 r ows for 2 
reconstruction results, respectively. 
 
 
4 Conclusion 
     SfM is a mature algorithm in the field of 3-D 
reconstruction for optical images. This paper 
extends it to infrared images took by t hermal 
cameras, and propose a new TAC-RANSAC model 
based on AC-RANSAC by adding a temperature 
error term to eliminate mismatching points more 
efficiently. Instead of maximize the number of mat- 

  
(a) Based on the result of AC-RANSAC 

  
(b) Based on the result of TAC-RANSAC 

Fig.5 The generated 3-D point clouds. 

ches, the goal of TAC-RANSAC is to minimize 
NFAT. Compared to AC-RANSAC, the added error 
term is beneficial to the accuracy of keypoint 
matching and reduce the needed time of 
convergence. Once found a reasonable model, TAC-
RANSAC algorithm greatly saves time by either 
reducing the number of random samples or directly 
sampling in the matches to achieve the purpose of 
reduce the needed time of convergence. The result 
of 3-D reconstruction shows that the proposed 
model can improve the matching accuracy, reduce 
the mismatching rate, and generate a better 3-D 
point cloud with lower position error, angle error 
and RMSE. The further experiment reveals the 
potential 3-D monitoring abilities for different kinds 
of man-made  constructions. 
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